
Transparent Redundant Computing with MPI

Ron Brightwell, Kurt Ferreira, and Rolf Riesen

Sandia National Laboratories⋆

Albuquerque, NM USA
{rbbrigh,kbferre,rolf}@sandia.gov

Key words: MPI, fault tolerance, redundant computing, profiling interface

Abstract. Extreme-scale parallel systems will require alternative meth-
ods for applications to maintain current levels of uninterrupted execu-
tion. Redundant computation is one approach to consider, if the bene-
fits of increased resiliency outweigh the cost of consuming additional re-
sources. We describe a transparent redundancy approach for MPI appli-
cations and detail two different implementations that provide the ability
to tolerate a range of failure scenarios, including loss of application pro-
cesses and connectivity. We compare these two approaches and show per-
formance results from micro-benchmarks that bound worst-case message
passing performance degradation. We propose several enhancements that
could lower the overhead of providing resiliency through redundancy.

1 Introduction

It is widely accepted that future extreme-scale parallel computing systems will
require alternative methods to enable applications to maintain current levels
of uninterrupted execution. As the component count of future multi-petaflops
systems continues to grow, the likelihood of a failure impacting an application
grows as well. Current methods of providing resiliency for applications, such as
checkpoint/restart, will become ineffective, largely due to the overhead required
to checkpoint, restart, and recover lost work. As such, the research community
is pursuing several alternative approaches aimed at providing the ability for an
application to survive in the face of failures and to continue to make efficient
computational progress.

One of the fundamental approaches for masking errors and providing fault
tolerance is redundancy. Replicating state and repeating operations occurs in
many parts of modern computing systems; e.g., RAID has become common-
place. In order for redundancy to be viable for parallel computing, the potential
performance degradation has to be offset by significant benefits. An important
consideration for existing parallel computing systems and applications is the
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amount of invasiveness that will be required to provide fault tolerance. Incre-
mental approaches that minimize modifications to applications, system software,
and hardware are more likely to be adopted.

We are exploring approaches to providing redundancy for MPI applications.
We are seeking to answer several important research questions: a) Can we employ
redundant computing with MPI transparently? b) What missing functionality,
if any, is needed? c) What is the worst-case overhead? d) Are there any possible
software or hardware enhancements that could reduce this overhead?

In this paper, we present two approaches for providing transparent redun-
dancy for MPI applications. Both of these approaches double the number of
processes in the application but use different schemes for recognizing failed pro-
cesses and lost messages.

2 Implementation

We implemented redundant computing as a library that resides between an ap-
plication and an MPI implementation. The rMPI library is described in detail
in [1]. Here we provide only a brief description and highlight the parts which are
relevant for the remainder of this paper.

2.1 Design choices

Future, large-scale machines where redundant computing may be of advantage [2]
will have many nodes and will run MPI between these nodes to achieve the de-
sired performance and scalability. Therefore, we implemented rMPI using the
profiling interface of MPI. This provides us with portability across MPI imple-
mentations.

The second reason for implementing rMPI at the profiling layer is that we
wanted to have a mechanism that is transparent to the application. Other than
at job submission time when a user requests additional nodes for redundant
computing, the application is not aware of the mechanism. It only sees, and
interacts with, the active ranks and is unaware of the additional ranks and
communication behind the scenes.

Using rMPI, we start an application on n . . . 2n nodes. During MPI Init()

we set up a new communicator for the first n active nodes and substitute that
communicator whenever the application uses MPI COMM WORLD. Any nodes beyond
n become redundant nodes for active nodes in a one-to-one fashion. Each re-
dundant node performs the exact same computation as its active partner. The
rMPI library ensures that it sees the same MPI behavior as the active node.
That means if the active node is rank x, then the redundant node will also
be rank x. The rMPI library performs the necessary translations to the actual
ranks used by the underlying MPI library. Both nodes would send to rank y,
even though there might be actually two nodes that have been assigned rank y.

Maintaining consistency for receives using MPI ANY SOURCE or MPI ANY TAG re-
quires a consistency protocol between active and redundant nodes. For example,



MPI guarantees message order between node pairs, but rMPI must make sure
that the message order seen on an active node is the same on its redundant node.
Otherwise, computation on these two nodes could diverge.

2.2 Mirror protocol

We started implementing rMPI with a straightforward protocol called mirror .
As the name implies, it duplicates every message an application sends by trans-
mitting it first to the original destination and then one more time to the desti-
nation’s redundant partner, if it exists.

Each receiver posts two receives into the same buffer for every application
receive, if the sending node has a redundant partner that will also send. When
nodes fail, rMPI is notified and stops sending to disabled nodes or posting re-
ceives for messages that will no longer be sent.

Figure 1. In the mirror protocol
each sender transmits the user mes-
sages twice and additional consis-
tency protocol exchanges are needed
in the case of MPI ANY SOURCE.

Figure 1 illustrates the process. As
long as either the active node or its redun-
dant partner are still alive, the application
can continue. Only when both nodes in a
bundle die, or a node without a redun-
dant partner dies, will the application be
interrupted and must restart.

Mirroring message order on two inde-
pendent nodes in case of a MPI ANY SOURCE

receive requires that only one node post
the receive, and informs the second node
of the actual receive order so it can post
specific tag- and source-field receives to duplicate that order. If any MPI ANY -

SOURCE receives are pending, the second node must queue all subsequent receives,
without letting the MPI implementation see them, until all current MPI ANY -

SOURCE receives have been satisfied.

2.3 Parallel protocol

The mirror protocol consumes a lot of bandwidth when an application sends
many large messages. To reduce this overhead we designed a second protocol
named parallel . It is illustrated in Figure 2. Other than short protocol messages,
rMPI only sends the original application messages between nodes. However, a
larger number of protocol messages are now needed because the sender and its
redundant partner must ensure that each of the destinations receive one copy of
the message.

If one of the sender fails, the other must take over and send the additional
copy. The parallel protocol somewhat resembles a transaction protocol where the
two sending partners must ensure that both receivers get exactly one copy each
of the application message. While this works well for large application messages
where the overhead of a few additional short messages makes little difference, it



is a problem for applications which send a lot of short messages. In that case the
message rate that can be achieved by the application is reduced.

2.4 Issues

Figure 2. Message flow in the par-
allel protocol.

Initially we did not know whether trans-
parent redundant computing could be
achieved at the MPI level. We have
shown [1] that it is possible, with rela-
tively minor demands on the RAS sys-
tem. Applications experience a perfor-
mance impact that is in general less than
10%. Of course, micro-benchmarks clearly
show the overhead present in the two pro-
tocols we have described.

While moving lower than MPI in the networking stack is not necessary, doing
so may have advantages. The purpose of this paper is to further narrow the issues
with our current prototype of rMPI and propose new solutions. To start, we list
some issues that we have identified:

1. No redundant I/O. MPI-I/O and standard I/O are not currently handled by
rMPI.

2. Missing integration with a RAS system. There is no standard way of doing
this, but rMPI needs to know which nodes are alive, and the MPI imple-
mentation needs to survive the disappearance of individual nodes.

3. rMPI is an almost full re-implementation of the underlying MPI library.
4. Collective operations are reduced to point-to-point transmissions eliminating

many of the optimization efforts performed by the underlying MPI library.
5. Mirroring message order on independent nodes for MPI ANY SOURCE receives

causes consistency protocol overhead.
6. Delayed posting of MPI ANY SOURCE receives can increase the number of un-

expected messages.
7. The mirror protocol consumes twice the bandwidth that the application

needs and increases latency for small messages.
8. The parallel protocol is more frugal in its bandwidth consumption, but limits

message rate.

In this paper we want to address items 3 through 8 and propose some ideas
that could improve the performance of rMPI and limit some of its other short-
comings. In particular, we are interested in exploiting an intelligent network
interface controller (NIC) and router designs to off-load some rMPI function-
ality. Furthermore, it would be interesting to design a solution that combines
intra-node communication among the cores of a node with the necessary inter-
node communication to reach redundant nodes which should be, for reliability
purposes, physically as far away as possible inside the machine. The following
sections describe our measurements and solutions.



3 Results

In this section, we present the performance impact of our two protocols using
a latency, bandwidth, and a message rate microbenchmark. Latency and band-
width tests are from the OSU MPI benchmark suite(OMB) [3] while the message
rate test is from the Sandia MPI microbenchmark suite. Due to the protocols
special handling of MPI ANY SOURCE, we created another microbenchmark similar
to the OMB latency test which uses wild-card receives.

We conducted our tests on the Cray Red Storm system at Sandia National
Laboratories. Each data points corresponds to the mean of five runs with error
bars shown. In each of the following plots native refers to the performance of
the benchmark without the rMPI library. Base for each of the protocols refers
to performance with the rMPI library linked in but no redundant nodes used.
The parallel and mirror lines are the performance of the application with a full
set of replica nodes. Dashed lines show the overhead of keeping these replicas
consistent.

Figures 3 and 4 illustrate the performance impact of the protocols on both
bandwidth and message rate. Bandwidth in Figure 3 behaves as expected from
the protocol descriptions in the previous section. The mirror protocol achieves
about half of the observed bandwidth of native and the parallel protocol reaches
nearly native bandwidth for large messages but for smaller messages the in-
creased protocol message traffic hinders achievable bandwidth. Similarly, Fig-
ure 4 shows that for smaller messages mirror is able to achieve a higher message
rate than parallel (with mirror’s rate around half of that of native), but as mes-
sage size increases parallel’s rate approaches to within 10% of native.
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Figure 3. Bandwidth measurements for the two protocols compared to native and
baseline. Native is the benchmark without rMPI, base has rMPI linked in but does
not use redundant nodes.

We examine the protocols’ impact on application latency next. Figure 3 shows
the results of the latency microbenchmark without MPI ANY SOURCE receives, and
Figure 3 repeats the experiment with MPI ANY SOURCE receives. Again, latency for
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Figure 4. Message rate measurements.

parallel is significantly lower than mirror. This is due to the fact that mirror must
either wait for both messages to arrive or receive one of the messages and cancel
the other before proceeding. Each of these operations require much more time
than the one receive that the parallel protocol must wait for. Note in Figure 3
that this difference in performance between the two protocols is smaller when
an MPI ANY SOURCE receive is posted. This is because the overhead is dominated
by the consistency protocol to enforce message order on the redundant nodes.
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Figure 5. Latency without MPI ANY SOURCE for the two protocols.

These microbenchmark results show that parallel is better for bandwidth
and latency sensitive applications, and mirror has the advantage of having a
higher achievable message rate for smaller messages and places less demand on
RAS system functionality [1]. In either case, it is clear that the performance of
both protocols could be improved with some additional support from both the
underlying hardware and the MPI implementation.
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Figure 6. Latency with MPI ANY SOURCE for the two protocols.

4 Accelerating redundant computing

In Section 2.4 we identified issues with the current implementation of rMPI and
in Section 3 we measured some additional properties that are affected by the
rMPI implementation and the protocols it uses. We are now ready to address
issue items 3 through 8 from our list on page 4.

4.1 Integrating rMPI into an MPI implementation

While implementing rMPI as a layer between the application and the MPI im-
plementation allowed for quick prototyping, it has performance and code mainte-
nance drawbacks that can be addressed by moving rMPI inside an existing MPI
implementation. For example, this approach would allow for providing fully op-
timized collective operations.

4.2 Bandwidth and latency consumption

The mirror protocol sends each application message twice. Since the messages are
identical, save for the different destinations, it would make sense to let the NIC
duplicate the message and send two copies out, potentially reducing bandwidth
consumption on the local NIC- to-memory connections. An even better approach
would be to have the first router where the two message paths diverge, do this
task. The message would have to be flagged as a redundant message and contain
the address of, or routes to, both destinations. This mechanism would be an
incremental increase in complexity inside a router or NIC. It would help the
parallel protocol when it is operating in degraded mode.

Currently, rMPI operates below the collective operations and uses the MPI
implementation underneath as a point-to-point transport layer. This leads to
poor collective performance as can be seen in Figure 7. This figure shows the



consistency protocol overhead for a barrier operation for both mirror and par-
allel. Similar slowdown can be seen for other collective operations [1]. Instead,
rMPI should make use of the provided and optimized collective operations, and,
for example, use one broadcast operation to deliver data to all nodes – active
and redundant. This would help both protocols to take advantage of topology
optimized MPI features.
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Figure 7. MPI Barrier() performance for the two protocols compared to native.

4.3 Message order semantics in case of MPI ANY SOURCE

Both protocols suffer when an application posts receives with the MPI ANY SOURCE

or MPI ANY TAG marker. We cannot post the receive on the redundant node until
we know in which order the message arrived at the active node. This causes
overhead due to processing of unexpected messages. In addition, rMPI latency
is degraded because of the protocol overhead to agree on a message order.

Implementation issues with MPI ANY SOURCE are well known and some re-
searchers have advocated forbidding it, saying that well-written applications do
not need it. rMPI can avoid most of the overhead when an application does not
use MPI ANY SOURCE, since both nodes in a pair can detect the use of MPI ANY -

SOURCE. However, the fundamental problem remains for a fully compliant MPI
implementation. (rMPI currently handles MPI ANY SOURCE properly, but does not
support message receives with both MPI ANY SOURCE and MPI ANY TAG specified.)

One option we have not evaluated yet, is a modification to the parallel pro-
tocol. In Figure 2, instead of node A’ sending the redundant message, node B
could send a copy to node B’. That way node B could control the message order
B’ sees. A redundant node would get all of its messages from its active partner.
When sending, a protocol is needed to let the redundant node know that the
message has been sent and that the redundant node can skip the transmission.
If the active receiver (B in the example) fails, the active sender (A) would trans-
mit to the redundant receiver (B’). If the active sender (A) fails, the redundant
sender (A’) would start sending to the active receiver (B).



We have not implemented this variation of the parallel protocol because we
believe it would not significantly improve performance, and few high-performance
applications use MPI ANY SOURCE in the critical path.

4.4 Use of one-sided operations

It might be possible to use one-sided operations to accelerate data delivery when
MPI ANY SOURCE is used. This method would be useful for larger messages; tem-
porary buffers and memory copies can be used for short messages. The active
receiving node would inform the redundant receiver about the message order and
let the redundant node get the data in the appropriate order using a pull pro-
tocol. This method would increase latency slightly, since the get request needs
to be sent, and, depending on the architecture, a confirmation that the data has
been picked up. This small overhead can be easily amortized for larger messages
and the overhead to copy short messages into the correct user buffers is small.

5 Related work

Although redundancy is one of the fundamental approaches to masking errors
and providing resiliency, it has not been extensively explored or deployed in high-
performance computing (HPC) environments. Since HPC applications can scale
to consume any of the available resources in a system (e.g., compute power, mem-
ory), the cost of duplicating resources for resiliency has been perceived as being
too high – especially given the reliability levels of current large-scale systems.
However, there are several characteristics of future systems that are motivating
the community to explore alternative approaches to resiliency. Recently, redun-
dant computation has been suggested as a possible path [4, 5] to resiliency, and
the increasing probability of soft errors in future systems has also lead some to
argue that higher levels of redundancy will also be needed [6].

There are several prior and ongoing research projects that are exploring re-
siliency and fault tolerance for MPI applications [7–11]. The MPI-3 Forum is also
considering enhancements to the standard to enable fault-tolerant applications.

Most similar to rMPI is P2P-MPI [12, 13] which provides fault tolerance for
grid applications through replication. In contrast to rMPI, P2P-MPI does not
ensure consistency when wild-cards are used. In addition, P2P-MPI is tied to
Java and requires a number of grid based services and protocols, which make this
library inappropriate for an HPC environment. Furthermore, the failure analysis
of P2P-MPI focuses on the probability of failures in the presence of replication,
while in this work we focus on the impact of MTTI for the application which
we believe is a more useful metric [2]. The approach we describe in this paper is
very different from the other work on providing resiliency in the context of MPI
applications, mostly due to the assumption that the cost of using resources for
redundant computation will be acceptable for future large-scale systems.

There is some precedent for paying the resource cost of redundancy in high-
performance computing. In [14] IBM describes a flow control protocol designed



to efficiently manage limited buffer space for MPI unexpected messages on their
BG/L system. Even though the network is reliable, an acknowledgment-based
flow control protocol is used to ensure that unexpected messages do not overflow
the limited amount of available memory on a node. This protocol can potentially
slowdown all applications, but the authors argue that a factor of two increase in
runtime is acceptable: “Nevertheless, the main conclusion is that the overhead
is never more than twice the execution time without memory problems, which is
not a hight [sic] price to pay to make your application run without problems.”
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